连铸中间包钢水温度控制 Temperature control of steel liquid of tundish in continuous casting process
连铸中间包钢水温度控制 在连铸过程中,保持钢水温度稳定,降低出钢温度,在较低的过热度条件下浇注,是保证浇注过程顺利进行以及铸坯质量达到要求的重要手段。中间包是储存、分配钢液的最后一个耐火材料容器,作为冶炼与连铸的中间环节,中间包在钢的生产过程中起着承上启下的作用。中间包调整钢液温度的作用,越来越被人们所重视。中间包流出的钢液温度就是钢的浇铸温度,钢水的浇注温度是浇注的重要工艺参数。合适的浇注温度是顺利连铸的前提,合适的浇注温度又是获得良好铸坯质量的基础。如果在中间包内钢水浇注的中期,钢液温度过低,则造成连铸后期钢液流动性差,钢中夹杂物增多,甚至产生水口堵塞等事故,迫使浇注中断;而如果钢液温度过高一方面必然迫使出钢温度提高,使钢铁产品质量变差及耐火材料损耗严重,另一方面限制了连铸机拉速的提高,容易引起钢水包水口失控,而且会使坯壳减薄和厚度不匀,增加了拉漏危险等。因此中间包内钢液温度是连铸操作制度的核心,是保证连铸坯质量的重要保障。 合格的钢液浇注温度是指出钢时符合工艺要求的温度。制定出钢温度,要根据中间包钢液的目标温度(所生产钢种的液相线温度加上合适的过热度),并要考虑出钢至浇铸过程各环节的热量损耗来确定。钢液过热度过高或过低对钢的生产都不利。表1-1为中间包内钢液过热度过高或过低对连铸的影响。 Temperature control of steel liquid of tundish in continuous casting process In the process of continuous casting, the stability of the molten steel temperature is an important means to ensure the smooth progress of the casting process and the casting quality to meet the requirements. The tundish is the last refractory container for storing and distributing steel liquid. As the tundish of smelting and continuous casting, the tundihs plays a role of connecting the previous and the following in the production process of steel. More and more attention is paid to the role of adjusting steel liquid temperature. The temperature of molten steel flowing out from the tundish is the casting temperature of steel, and the pouring temperature of molten steel is an important process parameter of pouring. Appropriate pouring temperature is the premise of smooth continuous casting, and appropriate pouring temperature is the basis of obtaining good casting quality. If the temperature of the liquid steel is too low in the middle stage of the molten steel is too low, the fluidity in the liquid steel is poor, the increase of inclusion in the steel, and even the blockage, the temperature increases the quality of the steel products and the refractory material...Read MoreBOF 炉衬损坏原因分析 Analysis of the damage cause of the furnace lining
炉衬损坏原因分析 1 , 加废钢和兑铁水时对炉衬的冲刷,和机械磨损 2 , 钢液和炉渣的搅动以及炉气的冲刷 3 , 炉渣对炉衬的化学侵蚀 转炉炉衬要交替经受化学侵蚀的两个阶段: 1 , 前期酸性熔渣的侵蚀阶段,该阶段主要是sio2的侵蚀,低熔点硅酸盐入侵后向耐火材料内部迁移,破坏基质,形成脱碳层: 3mgo + cao + sio2 – > 3CaO.MgO.2SiO2 ( 1575’C ) MgO+CaO+SiO2 – > CaO.MGO.SIO2 (1495’C ) MGO+2CaO+SIO2 -> 2CAO.MGO.SIO2(1458’C) MGO+CAO+2SIO2 – > CAO.MGO.2SIO2(1391’C) 氧化铁随后入侵,碳素骨架被破坏,耐材层冲刷掉。 FEO+C – > CO + FE 末期碱性熔渣的侵蚀阶段,在高温下氧化铁的侵蚀作用,FEO与CAO反应形成低熔点的铁酸盐,使耐材收到严重侵蚀。 Analysis of the damage cause of the furnace lining 1, add scrap steel and molten iron on the furnace lining erosion, and mechanical wear agitation of steel liquid and slag and erosion of furnace gas Chemical erosion of the slag on the furnace lining The converter furnace lining is alternately subjected to two stages of chemical erosion: The erosion stage of acid slag in the early stage is mainly the erosion of sio 2. After invading the low melting point silicate, it moves into the refractory material, destroying the matrix and forming a decarbonization layer: 3mgo + cao + sio2 – > 3CaO.MgO.2SiO2 ( 1575’C ) MgO+CaO+SiO2 – > CaO.MGO.SIO2 (1495’C ) MGO+2CaO+SIO2 -> 2CAO.MGO.SIO2(1458’C) MGO+CAO+2SIO2 – > CAO.MGO.2SIO2(1391’C) The iron oxide then invades, the carbon skeleton is destroyed, and the refractory layer is washed away. FEO+C – > CO + FE In the erosion stage of alkaline slag, the erosion of iron oxide...Read More硅质捣打料粒度配比 Grain size ratio of silicon ramming material
硅质捣打料主要用于中频炉炉衬, 捣打料以成型之前无粘结性,以振动或者强力捣打获得密实结构,故合理的粒度分配成为影响其性能的重要因素之一,硅质材料在高温下存在复杂的晶相转变,因而要考虑加入硅砂粒度组成以及结合剂种类对材料高温性的影响,从sio2-b2o3相图看,b2o3的加入量不易过多。随着原料颗粒粒度的增大,烧后硅质材料耐压强度增大,因而捣打料中加入硅砂粒度越大越好。 Quartz ramming material is mainly used for induction furnace lining, tamping material before forming no bonding, with vibration or powerful tamping get compact structure, so the reasonable size distribution become one of the important factors affecting the performance, quartz materials at high temperature complex phase transition, so to consider to add silicon sand size composition and the influence of the material high temperature, from the sio 2-b2o3 phase diagram, b2o3 added amount is not easy too much. With the increase of the particle size of the raw material, the compressive strength of the silicon material increases after burning, so the greater the particle size of the silicon sand is added to the tamping material, the better.Read More中低碳铬铁,炉底损毁机理 Medium and low carbon iron chromium, furnace bottom damage mechanism
中低碳铬铁,炉底损毁机理 炉底捣打料的侵蚀速度主要取决于捣打料的性能,炉渣碱度,施工温度, 操作时间。 在送电后,炉底温度逐步上升,超高1300度,炉底上升逐渐出现FEO液相,与cao生产铁酸钙。 当炉温超过1435度,C2F分解,液相FEO逐渐被方镁石吸收,形成MG.FEO 固溶体,CAO 与 SIO2形成C2S , 原始材料mgo+c2f形成 RO 固溶体+ c2s陶瓷相 。 在炉子降温过程中,半烧结带存在体积膨胀,破坏烧结带整体性。 熔融液体浸入方镁石颗粒间隙,逐渐熔侵方镁石,形成低温cms-c3ms2,降低整体材料高温性能,导致炉衬寿命缩短。 Medium and low carbon iron chromium, furnace bottom damage mechanism The erosion speed of furnace bottom tamping material mainly depends on its performance, slag and alkali degree, construction temperature and operation time. After the power transmission, the bottom temperature of the furnace is gradually increased, super high 1300 degrees, the bottom rise of the furnace will gradually appear FEO liquid phase, and cao production of calcium ferrate. When the furnace temperature exceeds 1435 degrees, C2F decomposes, the liquid phase FEO is gradually absorbed by calcite to form MG.FEO solid solvent, CAO and S I O S form C2S, and the original material mgo + c2f forms RO solid solvent + c2s ceramic phase. In the process of furnace cooling, the semi-sintering belt volume expands, which destroys the integrity of the sintering belt. The molten liquid is immersed into the particle gap of calcite, and gradually melts the calcite, forming a low temperature cms-c3ms2, which reduces the overall high temperature performance of the material and leads to the shortened life of the furnace lining.Read MoreCommon slide gate plate damage phenomenon and analysis 常见滑板损毁现象及分析
常见滑板损毁现象及分析 1.1热冲击破坏 滑板使用前温度很低,而在浇注过程中,滑板在短时间内与高温钢水接触,由此产生的巨大温差对滑板本体会产生强烈的热冲击作用。此时在滑板浇注孔外部产生了张应力,一旦此应力超过滑板材料的强度,就会形成辐射状微裂纹。此类裂纹有利于外来钢水、熔渣和氧气的扩散、聚集、渗透,成为加剧化学性侵蚀的诱因。 1.2热化学侵蚀 滑板在使用过程中接触高温钢水和熔渣,会发生一系列化学反应,造成热化学侵蚀。这类侵蚀容易造成滑板工作面高温耐磨性变差,表面层脱落,导致滑板吻合性不良,缝隙增大,进而导致吸气,进一步氧化侵蚀,上述过程交替作用后,严重时会导致滑板漏钢等重大事故。 1.3操作因素 通过实践总结,对滑板造成损坏的操作因素可以归纳为滑板安装、浇注控流及水口烧氧三大类。 (1) 滑板安装不合理。当滑板在安装到滑动机构内时没有严格放平,出现翘动,或者滑板夹持松动,就会在使用过程中产生很大的外来应力,从而导致滑板的整体破坏。 (2) 生产中浇注控流不合理。在浇注过程中控流操作不合理时,容易导致滑板工作面的剥落、侵蚀、夹钢等现象。总结生产中的控流操作,发现容易造成滑板损坏的主要原因是滑板动作幅度过大,或动作过于频繁,特别是手动控流时造成的滑板破坏数量多于计算机自动控流的,说明操作中的人为因素也是造成滑板损坏的重要原因。 (3) 烧氧操作不合理。钢包整备操作或者在浇注过程中不下流时,均要对钢包水口进行烧氧,一旦烧氧操作不当,就会产生严重的烧氧侵蚀。造成滑板损毁的不当烧氧操作包括:滑板没有完全对眼即吹氧,造成氧气直接冲击滑板工作面;引流砂未完全流出时吹氧,则很难烧开,从而造成吹氧时间过长;氧气管与流道不平行,造成氧气流冲刷滑板孔边壁,形成扩孔等。另外,其他操作不当因素还包括钢包周转时间不合理,导致钢包整体温度下降,再使用时引起的热冲击大;滑板用火泥配比不当,搅拌不均匀,有杂质等。 Common slide gate plate damage phenomenon and analysis 1.1 Heat shock damage The temperature of the slide gate plate is very low before use, and in the pouring process, the slide gate plate contacts with the high temperature of water steel in a short time, and the resulting huge temperature difference has a strong thermal impact on the experience of the slide gate plate . A tension stress occurs outside the slide gate plate pouring hole, and once this stress exceeds the strength of the slide gate plate material, a radial microcrack forms. Such cracks are conducive to the diffusion, aggregation and penetration of external water of molten steel, slag and oxygen, and become the inducement to aggravate chemical erosion. 1.2 Thermochemical erosion In the use of high temperature steel and molten slag, will occur a series of chemical reactions, causing thermochemical erosion. This kind of erosion is easy to cause the slide gate plate working face high temperature and wear resistance deterioration, the surface layer falls off, resulting in poor slide gate plate anastomosis, gap increase, and then lead to inhalation, further oxidation erosion, the above...Read More铬铁合金炉 chrome ferro alloy furnace
铬铁合金炉 铬铁合金电炉炉衬主要存在镁质,碳质, 碳砖炉衬的主要问题是,cr+在高温(1450°+)下属于强氧化剂,cr+与c 剧烈发生反应,生产CR7C3 或者 CR3C2 , CR23C6 和 CO ,并由于温差等原因容易在炉内局部结壳,形成CO 聚集 。 镁质炉衬,由于镁质材料自身在冷热温度变化下,热稳定以及体积变化等原因,特别是部分区域在出钢前后温差浮动大的情况,容易出现局部脱落等现象,加之铬铁如果酸性比例过高,在高温下,容易与镁质耐材发生反应, 生成MGO.SIO2 ,CAO.MGO.SIO2 . Chrome ferro alloy electric furnace lining mainly exists magnesium, carbon base , The main problem of carbon brick furnace lining is that cr + belongs to a strong oxidant at high temperature (1450° +), and cr + reacts violently with c, producing CR7C3 or CR3C2, CR23C6 and CO, and it is easy to shell locally in the furnace due to temperature difference and other reasons, forming CO aggregation. Magnesium furnace lining, due to the magnesium material itself under the cold and cold temperature changes, thermal stability and volume change, especially parts of the large temperature difference before and after the steel floating, prone to local off phenomenon, combined with ferrochromium if acid ratio is too high, at high temperature, easy to react with magnesium resistance, generate MGO.SIO2, CAO.MGO.SIO2.Read MoreHigh temperature change of quartz ramming mass material 石英砂捣打料高温变化
石英砂捣打料高温变化 石英砂在573°产生晶体转变,发生体积膨胀, 577°,硼矸与石英砂形成玻璃相,表面釉化 。 870°,石英砂开始第二次晶体转变,体积,膨胀量持续放大。 1470°,石英砂晶体转变完成,体积增大5% 。 石英砂捣打料在这整个烧结和热传导过程中,形成烧结层,半烧结层和松散层。半烧结层从870度逐渐向烧结层过度。 于此同时,在高温下,石英砂体积明显变化,高温气孔率增加,体积稳定性变差,导致整体出现明显开裂,烧失后,产生明显收缩,剥落等。影响整体炉龄。 High temperature change of quartz ramming mass material Quartz sand produces crystal transition at 573°, occurs volume expansion, 577°, boron gangue forms a glass phase with quartz sand, surface glaze. 870°, quartz sand begins the second crystal transition, volume, expansion amount continues to enlarge. At 1470°, the quartz sand crystal transformation was completed, and the volume was increased by 5%. During the whole sintering and heat conduction process, the sintering layer, semi-sintering layer and loose layer are formed. The semi-sintering layer gradually excessive from 870 degrees to the sintering layer. At the same time, under high temperature, the volume of quartz sand changes significantly, the high temperature stomatal rate increases, the volume stability deterior, resulting in obvious overall cracking, burning loss, obvious shrinkage, peeling and so on. Affect the overall furnace age.Read More无硼捣含硼捣打料对比实验说明Comparison experiment description of boron-free and boron-containing ramming mass for induction furnace
无硼捣含硼捣打料对比实验说明 含硼捣打料主要包括以硼酸(H3BO3)和硼干(B2O3)为主要结合剂的石英硅质捣打料,硼酸在加热时分解以B2O3形式存在于沙料中,在温度1000-1300度时,B2O3和硅砂中的SIO等形成低熔点物质sio2.B2O3,从而降低了硅砂的熔点,改善烧结条件,提高了捣打料的烧结强度。加之热传导效率以及传导厚度等因素,在中频炉升温过和使用过程中,使捣打料层有效分为烧结层,半烧结层和松散层。 同时在高温(1600度)以及中温(1100度)对试样耐压强度的分析与对比,如图: Comparison experiment description of boron-free and boron-containing ramming mass for induction furnace Boron-containing tamping material mainly includes quartz silica tamping with boronic acid (H3BO3) and boron dry (B2O3) as the main binding agent, boric acid decomposition in B2O3 form of sand material during heating, at the temperature of 1000-1300 degrees, B2O3 and SIO in silica sand form low melting point material sio2.B2O3, thus reducing the melting point of silicon sand, improve sintering conditions, improve the sintering strength of tamping material. In addition, with the heat conduction efficiency and conduction thickness and other factors, the tamping layer is effectively divided into sintering layer, sintering layer, semi-sintering layer and loose layer. At the same time, the analysis and comparison of the sample compressive strength at high temperature (1,600 degrees) and medium temperature (1,100 degrees), as shown in the figure: 与无硼结合剂实验结果对比如下表: 有硼捣打料 无硼捣打料 项目 B2O3& (H3BO3) 原使用材料 优化实验指标 抗折强度 11 4.6 7.2 7.6 9.7 耐压强度 15.6 15.04 22.71 22.43 19.78 备注说明: 抗折强度是指材料单位面积承受弯矩时的极限折断应力。又称抗弯强度、断裂模量。通常指耐火泥料或陶瓷材料受到弯曲负荷的作用而破坏时的极限应力。 耐压强度:火材料在一定温度下,单位面积上所能承受的极限载荷。耐压强度是衡量耐火材料质量的重要性能指标之一,间接地反应出制品的组织结构,如致密性、均匀性、烧结性等。 根据对比实验结果以及数据,含硼捣打料在抗折强度以及晶体重建,抗体积膨胀等方面确实优于无硼捣打料。无硼捣打料在烧结强度特别是高温烧结强度大幅优于含硼捣打料。如配合好半烧结层以及松散层,有利于大幅提升使用寿命。 Note: Resistance strength refers to the ultimate breaking stress when the material per unit area bears the bending moment. Also known as flexural strength, fracture modulus. Usually refers to the limit stress when the refractory clay...Read More